第(3/3)页 吴敬中觉得,这会儿他只会傻笑了,金渝自己,也没好到哪里去。不过,还是有一丝理智在,捣了捣笑得嘴巴能咧到耳朵台的爱人。矜持点儿,矜持点儿,给桐桐争点儿气,别让人看笑话! 吴桐站在台上,向台下致敬的人躬身。她脸上挂着浅浅的笑容,这场学术报告会已经走到九十九步的尾声,距离真正全场通过,就只差最后一步。 等掌声渐渐落下,吴桐抬手轻按,现场人员落座,她问出了最后一个流程:“大家还有什么疑问吗?” 只是,好一会儿时间,全场并没有人举手,前排大佬没有一个动的,后面的人,自然也没人有脸暴露自己的无知。 整场报告会的结果,最重要的,还是前排那些大佬。小虾米只是来见证历史,真正来学习的。 “对于刚才我的报告,大家都没有疑问吗?”等待一会儿,吴桐有些讶然,再次出声。一般来说,这样的学术报告会,特别还是哥德巴赫猜想,应该会有不少人挑毛病,挑问题才是。她虽然自信,自己准备的足够充分,但是,也没期待,没有一个人挑毛病的。 “吴,你应该对自己的严谨周密有信心。”前排,一位身材高大的老者站起来,“吴桐,你好,我是朗兰兹·r,比起找寻一个完美答案不可能出现的问题,我更想向你请教,你的筛圆法中,能够与朗兰兹纲领的切入点···特别是希伯尔特模形式!” “朗兰兹先生,见到您很高兴。····两个素数相除时,余数是否是完全平方?二次互反律揭示了关于素数p和q的奇妙关系,p除以q的余数是否为完全平方····与“q除以p的余数是否为完全平方?高斯曾经证明过····” 对于朗兰兹的提问,吴桐沉吟了下,随即给出了一个完满解释,将她的无限筛圆法,和被视为数学大一统的朗兰兹纲领巧妙搭桥,关联数论、代数几何与约化群表示理论,他们的关系,深入密切。 随着吴桐的回答,朗兰兹眼中的光彩越发明亮,在场前排能听得懂的,也不由跟着拖延思维,惊艳非常。 第(3/3)页